The fine spectra for weighted mean operators
نویسندگان
چکیده
منابع مشابه
subdıvısıons of the spectra for cesaro, rhaly and weighted mean operators on c0 ,c and ℓp
there are many different ways to subdivide the spectrum of a bounded linear operator; some of them aremotivated by applications to physics (in particular, quantum mechanics). in this study, the relationship betweenthe subdivisions of spectrum which are not required to be disjoint and goldberg's classification are given.moreover, these subdivisions for some summability methods are studied.
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملcompact weighted frobenius-perron operators and their spectra
in this note we characterize the compact weighted frobenius-perron operator $p$ on $l^1(sigma)$ and determine their spectra. we also show that every weakly compact weighted frobenius-perron operator on $l^1(sigma)$ is compact.
متن کاملOn the fine spectra of the Zweier matrix as an operator over the weighted sequence space $l_{p}(w)$
In the present paper, the ne spectrum of the Zweier matrix as anoperator over the weighted sequence space `p(w); have been examined.
متن کاملSpectra of Some Composition Operators and Associated Weighted Composition Operators
We characterize the spectrum and essential spectrum of “essentially linear fractional” composition operators acting on the Hardy space H2(U) of the open unit disc U. When the symbols of these composition operators have Denjoy-Wolff point on the unit circle, the spectrum and essential spectrum coincide. Our work permits us to describe the spectrum and essential spectrum of certain associated wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1983
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1983.104.219